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As time goes by. ..

Distribution of reaction time (RT) scores

@ empirical distributions of reaction times (RTs) are typically
unimodal and positively skewed (e.g. van Zandt, 2002),
resembling rather ex-Gaussian, gamma, Wald, or Weibull
distributions

@ thus, RTs will often violate the assumption of normality made
in several parametric tests (e.g. Students’t t-test, ANOVAs
F-Test)
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distributions

@ thus, RTs will often violate the assumption of normality made
in several parametric tests (e.g. Students’t t-test, ANOVAs
F-Test)

@ What happens, if a parametric test is applied to highly
non-normal data?

@ Previous studies of e.g. Boneau (1960) and Posten (1978)
showed that the t-test is quite robust against distributional
violations, if sample size is moderately large (e.g. n > 20).

@ However, the t-test shows a power disadvantage, compared to
nonparametric tests (Zimmerman & Zumbo, 1993).



Review of research articles (1)

@ How is typically dealt with non-normality of RTs in research
practice? Are distributional considerations mentioned?

@ Journal of Experimental Psychology: Human Perception and
PR Performance (JEP:HPP): Review of 2000 and 2007 Volumes

@ Main coding categories:
@ Are RTs analyzed?

@ What kind of distributional considerations/procedures are
mentioned, if any?



Review of research articles (2)
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Overall

Volume 2000 2007

no. of empirical articles 104 102 206
no. of experiments 385 368 753
- no. of experiments analyzing RTs 229 (60%) 230 (63%) 459 (61%)
trimming/outlier removal 107 (44%) 114 (47%) 221 (46%)
log transformation 5 1 6 (1%)
fitting of RT models 13 (5%) 3 (1%) 16 (3%)
other/special * 23 (10%) 19 (8%) 42 (9%)
not mentioned but parametric 93 (39%) 101 (42%) 194 (41%)

tests (t- or F-test) used

*winsorized mean (Tukey, 1962); biweight estimates of means & interquartile stretch
criterion (Hoaglin, Mosteller, & Tukey, 1983); recursive trimming & non-recursive
shifting z-scores (van Selst & Jolicoeur, 1994);
vincentized distributional analysis (Ratcliff, 1979)
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Data Transformation (1)

@ transforming raw scores increases the power to detect
differences (Doksum & Wong, 1983; Rasmussen & Dunlap,
1991)

@ nonlinear transformations can achieve normality by altering
the distance between data points

@ For RT-measures the log-transformation is considered as an
adequate tool to overcome non-normality (Kirk, 1983)

x' = log(x) or x' =log(x +¢)

if some sample values are zero.




Data Transformation (2)
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Adaptive Transformation (Kirk, 1983)
@ This procedure combines the reciprocal, the log, and the
square root transformation.

@ Decision Rule:

@ Each transformation is applied on the smallest and largest score
within each experimental condition.

@ Determine the range within each treatment level and compute
the ratio of smallest to the largest range.

© The transformation generating the smallest ratio is selected.



Data Trimming (1)
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@ The sample trimmed mean reduces relatively large standard
errors and thus represents a more robust measure of location,
if samples are heavily skewed.

@ Application:

@ Reorder the sample ascendingly.
@ Determine the trimming criterion g.

© Remove the g-largest and g-smallest values and use the
remaining observations for the further analysis (Wilcox, 2005).



Data Trimming (2)

Adaptive Trimming (Leger & Romano, 1990)

@ Besides the usage of constant trimming (in terms of
percentage of removed observations, in terms of SDs, or in the
case of RT measures using fixed time values) it is also possible
to determine the trimming proportion empirically.

@ To this end, the standard error of the trimmed mean is
computed for values like 0, 10%, and 20% and the value
producing the smallest standard error is used for trimming.



Non-parametric tests

Wilcoxon-Mann-Whitney U-test/ Kruskal-Wallis test

@ The U - test (as well as the Kruskal Wallis test) gains a power
advantage over parametric procedures if the normality
assumption is not fulfilled (cf. Zimmerman, 1994;
Zimmerman & Zumbo, 1993).

@ This can be explained through the conversion of initial scores
to ranks, which reduces the distortive influence of extremely
deviant scores.



IV. Monte Carlo Simulation

IV. Monte Carlo
Simulation



Procedure
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Simulation Procedure
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@ Samples were evaluated using the two-sample t-test on
@ raw RT scores
@ log-transformed RT scores
© adaptively transformed RT scores
@ trimmed RT scores (20,2.50,30)
@ adaptively trimmed scores
@ nonparametric U-Test.

@ To evaluate the power of the tests, differences in location were
induced by adding constants (6 = 0,1,2,3) to the raw values
in one sample.

@ The sampling procedure was replicated 50,000 times, all tests
were non-directional using & = 5%.
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Wiedermann & TRANSFORM TRIMMING

5 Skewness (k) t LOG ADAPT 28D 2.55D 3SD ADAPT w
0 0.71
144
1.84
2.01
1 0.71
1.44
1.84
2.01
2 0.71
1.44
1.84
2.01
3 0.71
1.44

2.01

Results
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Results

Results: Overall

TRANSFORM TRIMMING
5 Skewness (x) t LOG  ADAPT  2SD 255D  3SD  ADAPT w
0 071 192 488 5.00 188 480 189 172 182
144 490 5.02 512 496 503 5.15 461 501
1.84 488 5.03 5.02 516 5.07 499 449 510
2.01 480 495 499 511 493 497 435 5.02
1 071 1644 17.18 1778 1561 1664 1684 1618 17.13
144 1653 18.88 1988 19.07 1860 1805 1789 2092
1.84 1657 2238 2370 2113 1989 1895 1873 25.98
201 1616 2624 2686  21.88 2010 1891 1839 3135
2 071 4994 5219 5316 47.20 5062 50.95 4997 5264
144 4982 5698 5827 5652 5565  53.90 5473 62.01
1.84 5027 6575 6434 6196 5884 5645 5751 7111
2.01 4991 7322 6710 6372 5985  57.05 5735 7611
3 071 8380  85.64 8623  80.65 8405  84.48 8376 85.68
144 8352 8888 8912 87.41 8734 8630 8681  90.88
1.84 8329 93.06 9123 90.77 8004  87.48 8803 94.09
2.01 8386 9598 9284 9197 9003 8827 8807  95.32




Results: Transformations

As time goes by

Wiedermann & TRANSFORM

5 Skewness (k) LOG ADAPT
0 0.71 4.88 5.09
144 5.02 5.12
1.84 5.03 5.02
2.01 4.95 4.99
1 0.71 17.18 17.78
144 18.88 19.88
1.84 22.38 23.70
2.01 26.24 26.86
2 0.71 52.19 53.16
144 56.98 58.27
1.84 65.75 64.34
2.01 73.22 67.10
3 0.71 85.64 86.23
144 88.88 89.12
1.84 93.06 91.23

2.01 95.98 92.84

Results




Results: Trimming
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Wiedermann & TRIMMING

5 Skewness (k) 28D 2.58D 3SD ADAPT
0 0.71 4.88 4.80 4.89 4.72
144 4.96 5.03 5.15 4.61
1.84 5.16 5.07 4.99 4.49
2.01 5.11 4.93 4.97 4.35
1 0.71 15.61 16.64 16.84 16.18
144 19.07 18.69 18.05 17.89
1.84 21.13 19.89 18.95 18.73
2.01 21.88 20.10 18.91 18.39
2 0.71 47.20 50.62 50.95 49.97
144 56.52 55.65 53.90 54.73
1.84 61.96 58.84 56.45 57.51
2.01 63.72 59.85 57.05 57.35
3 0.71 80.65 84.05 84.48 83.76
1.44 87.41 87.34 86.30 86.81
1.84 90.77 89.04 87.48 88.03

2.01 91.97 90.03 88.27 88.07

Results




Discussion: Transformation

Normality?

t-test Skewness?

low - moderate (5 1.4) high (Z 1.8)

adaptive log



Discussion: Trimming
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Normality?

t-test Skewness?

low (£ 0.7) high (% 1.8)

small amount (3SD) large amount (2SD)



Take Home Message (1)
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’ From a statistical point of view:

@ The Wilcoxon test is robust independent of the degree of
skewness and most powerful (also true for nonparametric
tests in general?)

@ Adaptive trimming is less powerful than constant trimming.

@ For highly skewed distributions trimming a large amount is
more powerful than trimming a small amount (small 7 vs.
non-normality dilemma)

@ Adaptive transformation (Kirk, 1983) outperforms log
transformation in case of low-to-moderate skewness.

V. Conclusions

@ In general transformation is slightly more powerful than
trimming.

@ Among all procedures the t-test on raw scores is least
powerful.



Take Home Message (2)

From a theoretical point of view:

Trimming and transformation cause problems of
interpretability (e.g. effect sizes) and methods of RT
modeling may be more suitable!

V. Conclusions



Thank you for your attention.

ALPEN-ADRIA
UNIVERSITAT
KLAGENFURT



Data Transformation (2)

As time goesby... Log — Transformation
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Data Trimming (2)

As time goesby... Amount of trimming: 10%
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V. Conclusions

Data Trimming (4)

Standard Enror
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The smallest standard error was
found using 13% trimming.
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Simulation Procedure
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o Miller (1988) defined twelve ex-Gaussian distributions which
reflect the shape and range of typically found empirical RTs

@ RT scores were simulated using the ex-Gaussian distribution
x=N(u,0)+E(A),

where N(, 0) is a normal distribution with mean y and
variance ¢, and E(A) is an exponential distribution with mean
A

@ Normal deviates were generated using the Ziggurat-method
(Marsaglia & Tsang, 2000).

V. Conclusions

@ E = —log(u) — 1, where u denotes a random uniform
variable with interval [0,1].
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